Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Expert Opin Pharmacother ; 24(4): 495-509, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2257737

ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is an immune-mediated disorder of the CNS manifested by recurrent attacks of neurological symptoms (related to focal inflammation) and gradual disability accrual (related to progressive neurodegeneration and neuroinflammation). Sphingosine-1-phosphate-receptor (S1PR) modulators are a class of oral disease-modifying therapies (DMTs) for relapsing MS. The first S1PR modulator developed and approved for MS was fingolimod, followed by siponimod, ozanimod, and ponesimod. All are S1P analogues with different S1PR-subtype selectivity. They restrain the S1P-dependent lymphocyte egress from lymph nodes by binding the lymphocytic S1P-subtype-1-receptor. Depending on their pharmacodynamics and pharmacokinetics, they can also interfere with other biological functions. AREAS COVERED: Our narrative review covers the PubMed English literature on S1PR modulators in MS until August 2022. We discuss their pharmacology, efficacy, safety profile, and risk management recommendations based on the results of phase II and III clinical trials. We briefly address their impact on the risk of infections and vaccines efficacy. EXPERT OPINION: S1PR modulators decrease relapse rate and may modestly delay disease progression in people with relapsing MS. Aside their established benefit, their place and timing within the long-term DMT strategy in MS, as well as their immunological effects in the new and evolving context of the post-COVID-19 pandemic and vaccination campaigns warrant further study.


Subject(s)
COVID-19 , Multiple Sclerosis , Sphingosine 1 Phosphate Receptor Modulators , Humans , Multiple Sclerosis/drug therapy , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Sphingosine-1-Phosphate Receptors/metabolism , Pandemics , Recurrence
2.
Clin Exp Pharmacol Physiol ; 48(5): 637-650, 2021 May.
Article in English | MEDLINE | ID: covidwho-1075748

ABSTRACT

Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of the disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffer from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogues including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogues to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COVID-19/pathology , SARS-CoV-2 , Sphingosine-1-Phosphate Receptors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/pharmacology , Humans , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine-1-Phosphate Receptors/genetics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL